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Incorporation of modifications in mono-, di-, and oligonucleotides Chart 1. ATP and Adenosine Derivatives for which Acidity
has found increasing use as tools in the investigation of enzyme Constants were Determined

mechanisms:2 Special attention has been given to modifications NH,

in the ribose moiety (e.g., replacement of theahd, in particular, N A

the 2-hydroxyl by hydrogen, amino, fluoro, thio, or methoxy 4 f\)N

functionalities?® If the influence from a modification is to be o o0 O NTN?

understood in detail, information on the properties of the modified -0-R-O-R-O-R-O o

nucleosides is essential. One important property is the acidity of 0- 0- O-

hydroxyls in the sugar moiety. ThngyaIue for ionization of one 1: a) X=OH. b) X = O-Me. OH X NH

of the secondary hydroxyls of adenosine, under a couple of different ¢)X=F,d)X=NHy, ) X=H 2

experimental conditions, is reported to be 12¢7%hd 12.17 (in <,N | SN

D,0) 5 Of particular value for reactions with thé-8xyanion as a N N/)

leaving group, is the relativeKy values for the 3hydroxyls in 2:a R, =Ry=H HO o

differently substituted nucleoside residues. To obtain relatiige p b: R, =CH;,R,=H

values of the most commonly used analogues, we have, in the c: Ry=H,R,=CH;j OR, OR,

present study, determined the acidities of secondary hydroxyls in

five ATP derivatives {a—ein Chart 1) by!3C NMR shift titrations. Table 1. Acidity Constants for Secondary Hydroxyls of ATP

In addition, we have determined the relative acidities of adenosine, Analogues 1a—e in H,0 Buffers (20 °C, /= 1.2 M)

2'-O-methyladenosine, and-®-methyladenosine2@—c in Chart compound pKa?

1) in three different solvents. ATP (1a) 12.98+ 0.04
It has been suggested that a hydrogen bond between the 2-O-methyl-ATP (Lb) 13.80+ 0.02

2'-hydroxyl and the 3oxygen would substantially influence the 2-F-dATP (L) 1274+ 0.02
2 . 2'-H,N-dATP (1d) 13.69+ 0.02

aC|.d.|ty gf the Nllydro.xyl an'd thus also Fhe energetlcs of transes- dATP (16) 1434019

terification reactions involving a'3xyanion leaving group’ To

our knowledge, hydrogen bonding between thbyiroxyl and the aThe K, values were obtained by linear regression analysis of plots of

3'-oxygen (or vice versa) in nucleosides has not been detected in'tﬁg(f?H—_(Sz)tnljs)4(<5<nbs—f3t‘)3 Vs Ptt]' (V:\slhgrg@ iSh the 3-IC ﬁ_(f:t C?iﬂ]icg: ostgi;ta(t)éd

. . . the ionized form and, is the 3- chemical shift of the
water. Although it _has been repqrted to be detected in 0rganiC s5rmy 10 b Errors reported are standard errors from the linear regression
aprotic solvent§,an important question to answer, however, is what  analysis. If we take into account that some measurement errors are present,
the energy gain of such a hydrogen bond would be, especially whenwe can estimate the errors to be somewhat highet@.1 and up tat0.2

the 3-oxygen carries a partial negative charge, as it would in a for dATP).

transition state with the'xyanion as the leaving group. Alimiting  that either there is no hydrogen bond or the influence on the stability
case that should give the strongest hydrogen bond is when theof the anion is insignificant. As a stronger support for this, there is
3-hydroxyl (or 2-hydroxyl) is fully deprotonated so that the a good linear correlation ofKy values ofla—e to the group
hydrogen bond is between an oxyanion and a hydroxyl group. electronegativit§ (Figure 1).

Hence, the difference inKy values of secondary hydroxyls in The conclusion must be that, in water, there is either no hydrogen
nucleoside derivatives should reflect the possible energetic influencebond between the'2and 3-oxygen in the monoanion or that this

of a potential hydrogen bond. If this is significant, one would also does not contribute toward the stability of the anion. An intramo-
expect a larger difference in acidity, between compounds that havelecular hydrogen bond would be expected to be more stable in a

or do not have H-bonding possibility, in less-polar solvents. less-polar solvent. To investigate if we could detect any influence
For determination of the relativeik values of 2-analogues in of a hydrogen bond on the stability of the adenosine oxyanion, we
H,0, commercially available '8riphosphate derivatives were determined the acidity constants for adenosineQ-nethylad-
chosen to ensure complete solubility of all of the analogues. For enosine, and'30-methyladenosine in 0, methanol, and dimethyl
enhanced sensitivity in the determination'® shifts of the C-3 sulfoxide (Table 2). Dimethyl sulfoxide (DMSO) was chosen be-

positions at different pH values, DEPT-90 or DEPT-135 sequences cause it has been considered as a mimic of a desolvated enzyme
were used. The acidity of the secondary hydroxyls of the ATP active sitel! and it has been shown that intramolecular hydrogen
analogues (Table 1) follows a trend that is related to the electron- bonds between an oxyanion acceptor and an OH donor are sig-
withdrawing ability of the 2substituent. Thé\pK, value between nificantly stabilized in DMSO compared to in water or methaAéf.

ATP and 2-O-Me-ATP is less than one unit (0.8). With a hydroxyl The differences in relative acidities 2&—c are quite similar in
being slightly more electron withdrawing than a methoxy and all of the solvents and even slightly less in the less-polar DMSO.
2'-OH being probably slightly more acidic thah@H, this indicates We can conclude from this that a potential hydrogen bond between
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suggest that significantly higher rates in such reactions in the
)} presence of a vicinal'zhydroxyl may be best explained by other
14.24 interactions, in some cases perhaps through hydrogen bonding
between the 20H and a phosphoryl oxygen.
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and Methods. S3: linear regression analysis of plots of pH versus
1324 10g(OH—00b9/(dons—O1) based on thé3C chemical shift §) changes
1 with pH for ATP analogueda—ein H,O buffers. S4: linear regression
analysis of plots of pH versus lod){—deb9/(dobs— 1) based on thé&C
128 chemical shift §) changes with pH for adenosine analog@es-c in
E H,O buffers and methanol. S5: plots HC chemical shift §) versus
126 y | - | T y T T l - pH for adenosine analogu@a—c in DMSO (left panel), and linear
230 2% 240 245 2%0 255 regression analysis of plots of pH versus Bgtdond/(dons—0L) based
GrpEneg(Mullay) on the3C chemical shift§) changes with pH for adenosine analogues
Figure 1. Plot of group electronegativities (where the values used are those 2a—c in DMSO (right panel). This material is available free of charge
for HOCH,, FCH,, HoNCH,, and CH groups) vs K. for ATP analogues via the Internet at http:/pubs.acs.org.
lac—e. Mullay’s improved group electronegativitfesere used (the value
for 1b is not available). A plot against Inamotalsvalued® also gives a
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